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The problem of hidden variables in quantum mechanics is formalized as follows. 
A general or contextual (noncontextual) hidden-variables theory is defined as a 
mapping f :  Q x M ~  C (f :  Q ~ C) where Q is the set of projection operators 
in the appropriate (quantum) Hilbert space, M is the set of maximal Boolean 
subalgebras of Q and C is a (classical) Boolean algebra. It is shown that contex- 
tual (noncontextual) hidden-variables always exist (do not exist). 

The purpose of this note is to state clearly the problem of hidden 
variables in quantum mechanics. This problem was formally posed by von 
Neumann (1955) sixty years ago, but a lot of confusion existed until the 
clarifying paper by Bell (1966). In my opinion, however, the situation is not 
yet clear and Bell's (1965) theorem is frequently misinterpreted. Conse- 
quently, I think that it is worth trying a new approach in order to define 
sharply the nature of the hidden-variable problem, using the language of 
quantum logics. The main new aspects of the approach are (1) its generality, 
(2) the connection between classical and quantum logics through logics 
associated with experiments rather than directly, and (3) the definition of 
contexts as algebras of quantum propositions. 

Quantum mechanics states that the basic mathematical structure for the 
study of a physical system is a Hilbert space H. Self-adjoint operators on H 
represent observables and self-adjoint, trace class, positive operators (density 
operators) represent states. In the quantum logic approach it is assumed 
that all observables can be obtained from dichotomic ones, which are associ- 
ated to idempotent operators (projectors). Following Birkhoff and von Neu- 
mann (1936), I shall identify projectors with propositions, these being the 
basic elements in the quantum logic approach. Then, by a standard method 
(Birkhoff and von Neumann, 1936; Jauch, 1968), the set Q of all proposi- 
tions making sense for a given physical system is endowed with the structure 
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of a non-Boolean orthomodular lattice and states are probability measures 
on Q. Let S be the set of states so defined (which can be put in one-to-one 
correspondence with the set of density operators on H). The mathematical 
structure of Q and S fully defines the quantum formalism as applied to the 
physical system (except for the laws of evolution) without further need of 
using explicitly the Hilbert space. 

The hidden-variables problem can be posed as the problem of finding 
another set C of (hidden-variable) propositions and a corresponding set of 
mappings of C into [0, 1], which define the (hidden-variable) states. I think 
that everybody will agree with this statement of the problem. What seems 
controversial is the relation between Q and C and between the associated 
sets of states. For the moment I shall make only the minimal assumption that 
the set C is an orthocomplemented poset admitting probability measures, but 
I shall add that any hidden-variable theory should fulfil the following two 
conditions" 

A. Every hidden-variable state can be obtained as a convex combina- 
tion of dispersion-free states, these being mappings of C into {0, 1 }. 

B. The predictions of the hidden-variable theory must agree with those 
of quantum mechanics for all possible experiments. 

Instead of condition A, or in addition to it, one might demand that C 
is (or can be embedded into) a Boolean algebra, as a condition for the 
hidden-variable theory being classical, but I shall not use this assumption 
here. 

In order to deal properly with condition B, I shall begin by formalizing 
the concept of an experiment. As usual, I shall consider that it consists of 
the preparation of a physical system followed by a measurement. (Between 
the preparation and the measurement there is a time interval during which 
the system evolves, but this is irrelevant here and I shall ignore the evolution.) 
I also assume that the preparation defines a state. On the other hand, in 
order to formalize the concept of measurement, we must take into account 
that two experiments in which we prepare the same state and measure the 
same set of propositions should not be considered as essentially different, 
even if the experimental setup is quite diverse. (By measuring a proposition 
I mean finding the probability that the proposition is true in the given--in 
general mixed--state.) In fact, both experiments should provide the same 
results according to the scientific principle of the reproducibility of experi- 
ments. Therefore, if M is the set of possible measurements, ml e M and m2 e M 
are essentially identical whenever the same set of propositions is measured 
in m~ as in m2. This leads us to identify tentatively measurements with 
subsets of Q. There are two constraints, however. In the first place, not all 
propositions can be simultaneously measured. Those which can are called 
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compatible, a concept that I shall define (Jauch, 1968) by the condition 
that these propositions belong to the same Boolean subalgebra of Q. (The 
corresponding projectors on the Hilbert space commute pairwise.) In the 
second place, if the subset of Q associated to the measurement mj contains 
the one associated to m2, the two measurements should not be considered 
as different, because performing m2 is equivalent to performing m~ without 
looking at the results obtained for the propositions contained in m~ and not 
in m2. All this leads to the following: 

Definition. A measurement m e M  is a maximal Boolean subalgebra of 
Q, i.e., there is no bigger Boolean subalgebra of Q containing m. 

Therefore, M is the set of maximal Boolean subalgebras of Q. 
Now we can define the most general hidden-variable theory that 

includes the requirements A and B stated above: 

Definition. A hidden-variable theory is a mapping f :  Q x M ~  C, the 
domain of which is the set of pairs {(a, m)) such that aem, fulfilling the 
following conditions: 

A1. The condition 

s(a)=~)~kpk(f(a,m)),  VmeM, Vaem, VseS (1) 

holds, where {Pk} is the set of dispersion-free states on C, and the real 
numbers $k fulfil 

Zk>0, )-', A~k= 1 (2) 

B1. The image of every Boolean subalgebra m e M  is a Boolean subalge- 
bra, and the one-variable mapping f,, :m-} C, where f , , ( a )=f (a ,  m), is an 
isomorphism for any fixed m. 

The reason for Axiom BI is that the set of propositions measurable in 
a particular experiment can be endowed naturally with the structure of 
a Boolean algebra (Pykacz and Santos, 1990), which we should assume 
isomorphic to the associated subalgebra of quantum propositions. 

This definition of hidden-variable theories corresponds to quite general 
ones, usually called contextual because the probability for a proposition a~ Q 
being true depends on the context of the measurement, that is, on m e M  in 
our notation, rather than being a property of the proposition and the state 
s e S  alone. Bell (1966) showed, with an informal argument, that contextual 
theories of quantum mechanics cannot be excluded, and Gudder (1970) gave 
a more formal proof. In our approach we can prove the following. 

Theorem. A contextual hidden-variable theory exists for every state of 
any physical system. 
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I shall give the proof by constructing explicitly a contextual hidden- 
variable theory for any state of an arbitrary physical system. Given the 
quantum lattice Q, we define C to be a horizontal sum (Pykacz and Santos, 
1990; Kalmbach, 1983) of disjoint Boolean algebras which are isomorphic 
to the elements of M (i.e., to a maximal Boolean subalgebra of Q). It can be 
easily proved (Kalmbach, 1983) that a horizontal sum of Boolean algebras is 
an orthomodular lattice. The isomorphisms define the mapp ing f  [Note that 
a given proposition a E Q may possess several different images f(a, m)~ C, 
one for each maximal Boolean subalgebra of Q containing a.] Any quantum 
state seS induces a state p on C by defining 

p(f(a, m)) = s(a) (3) 

It can be seen that both conditions A and B stated at the beginning for 
hidden-variable theories are fulfilled in this construction. 

Contextual hidden-variable theories are unsatisfactory in many respects. 
In particular, they are nonlocal, in Bell's (1965) sense, as can be shown 
without difficulty. In consequence, it is interesting to define another, more 
restricted, family as follows: 

Definition. A noneontextual hidden-variable theory is a mapping 
f :  Q--. C such that properties analogous to (1) and (2) hold, i.e. : 

A2. The following condition holds: 

s(a)=~A, kpk(f(a)), VaEQ, Vs~S, ~k>O, ~A.k=l  (4) 

B2. The image of every Boolean subalgebra m ~ M is a Boolean subalge- 
bra, and the restriction of the mapping to m is an isomorphism. 

Noncontextual hidden-variable theories, as defined above, are not pos- 
sible in general. The first proof of impossibility was given by Gleason (1957). 
Bell's (1965) theorem is also a valid proof, as the condition of locality is 
weaker than noncontextuality. 

A fundamental property of noncontextual hidden-variable theories is 
the following: 

Theorem. If  a, b, c . . . . .  de Q are such that a is compatible with b, b 
with c , . . . ,  and d with a (not necessarily for other pairs), then for any state 
sES the following inequality holds: 

where 

or(a, b) + o-(b, c) +- �9 �9 > or(d, a) 

or(a, b ) = s ( a ) + s ( b ) - 2 s ( a  ^ b) 

a ^ b is the meet of the propositions a and b. 

(5) 

(6) 
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I omit the proof, which is similar to the proof of the main theorem in 
Pykacz and Santos (1991). From this theorem, the impossibility of noncon- 
textual hidden-variable theories follows easily by exhibiting a particular 
example of a quantum mechanical state violating (5). This parallels the 
standard proof of Bell's theorem (Bell, 1966). 

Actually, Bell studied another family of hidden-variable theories which 
he called local. Local theories are extremely interesting from a conceptual 
point of view, but it is difficult to characterize them within the quantum 
logic approach, because locality is related to space-time and not to the 
mathematical structure o f  the set of propositions. For this reason I do not 
study them here. I only point out that they are partially contextual. 

I want to stress that all impossibility proofs of noncontextual or local 
hidden-variable theories make implicit use of the assumption that all self- 
adjoint operators in the Hilbert space of a physical system correspond to 
empirically observable quantities (except for superselection rules) or, equiva- 
lently, that all density operators correspond to states realizable in the labora- 
tory. If we do not make use of such an assumption, it is still an open question 
whether noncontextual hidden-variable theories of quantum mechanics in 
perfect agreement with experiments are possible. [The received wisdom is 
that local--and, a fortiori, noncontextual--hidden-variable theories have 
been already refuted empirically, but this belief is wrong (Ferrero et al., 
1990; Santos, 1991).] 
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